1- Setup the notebook
#import Libraries
import matplotlib as mtplt #import the matplotlib library
import pandas as pd #import pandas
import matplotlib.pyplot as plt #import the scripting interface of matplotlib
%matplotlib inline #allows to draw the plots in the same window (instead of showing the plot in a new window)
import seaborn as sns #import seaborn library
2- Prepare the dataset
The dataset for this tutorial tracks global daily streams on the music streaming service Spotify. It focuses on five popular songs from 2017 and 2018:
"Shape of You", by Ed Sheeran
"Despacito", by Luis Fonzi
"Something Just Like This", by The Chainsmokers and Coldplay
"HUMBLE.", by Kendrick Lamar
"Unforgettable", by French Montana
The dataset was borrowed from https://www.kaggle.com/alexisbcook/data-for-datavis?select=spotify.csv
url = 'Spotify.csv'
df = pd.read_csv(url, index_col='Date', parse_dates= True)
df.head()
Output:
3- Plot the data
Let's start with a line plot for each song.
df2 = df['Shape of You']
df2
df.sort_values('Date')
Output:
Plot Data
df2.plot()
Output:
As shown in the figure above, Pandas automatically made the index (date) as the x-axis and the column "streams counts of the song" as the y-axis.
We can label the x and the y and add a title using the commands
plt.xlabel()
plt.ylabel()
plt.title()
df2.plot(kind = 'line')
plt.title('Stream Count for the Song Shape of My Heart')
plt.xlabel('Date')
plt.ylabel('Stream_Count')
plt.show()
Output:
As shown the streaming spikes around March of 2017.
We use add a note in the diagram using the plt.text() method. The structure of the command is:
plt.annotate('text', xy= (x,y),xytext= (x,y))
x,y in this case is the x-axis and the y-axis of the marker (the spike that we want to annotate). xytext is the x-axis and y-axis of the location in which you want to add the annotation.
df2.plot(kind = 'line')
plt.title('Stream Count for the Song Shape of My Heart')
plt.xlabel('Date')
plt.ylabel('Stream_Count')
plt.annotate('Spike', xy=('2017-03-10',17887078), xytext=('2017-03-10',17887078))
plt.show()
Output:
Q1) Create a line plot for the Despacito song
df2 = df['Despacito']
df2.plot(kind = 'line')
plt.title('Stream Count for the Song Despacito')
plt.xlabel('Date')
plt.ylabel('Stream_Count')
plt.show()
Output:
Q2) Create a line plot to compare the Despacito song with the Shape of You song.
sns.lineplot(data=df['Shape of You'], label="Shape of You")
sns.lineplot(data=df['Despacito'], label="Despacito")
Output:
Q3) Add annotation to the location of the spike of the Despacito song.
import numpy as np
df2 = df['Despacito']
df2.plot(kind = 'line')
plt.title('Stream Count for the Song Despacito')
plt.xlabel('Date')
plt.ylabel('Stream_Count')
maximum = (150,0)
minimum = (350,40)
plt.annotate("local maximum", maximum)
plt.annotate("local minimum", minimum)
plt.show()
Output:
#text
import numpy as np
df2 = df['Despacito']
df2.plot(kind = 'line')
plt.title('Stream Count for the Song Despacito')
plt.xlabel('Date')
plt.ylabel('Stream_Count')
#annotation
plt.plot([0], [0.0], 'o')
plt.plot([150], [cc], 'o')
plt.annotate('peak', xy=(150, 23500000), xytext=(150, 23500000), fontsize=12)
Output:
Hire expert to get help in any visualization task, send your requirement details at realcode4you@gmail.com and get instant help with an affordable price.
Comentarios