top of page
realcode4you

Implementing Bag of Words Using Python Machine Learning



Fit method:

  1. With this function, we will find all unique words in the data and we will assign a dimension-number to each unique word.

  2. We will create a python dictionary to save all the unique words, such that the key of dictionary represents a unique word and the corresponding value represent it's dimension-number.

  3. For example, if you have a review, __'very bad pizza'__ then you can represent each unique word with a dimension_number as, dict = { 'very' : 1, 'bad' : 2, 'pizza' : 3}


import warnings
warnings.filterwarnings("ignore")
import pandas as pd
from tqdm import tqdm
import os

Creating Fit Method

# tqdm is a library that helps us to visualize the runtime of for loop. refer this to know more about tqdm
#https://tqdm.github.io/
from tqdm import tqdm 

# it accepts only list of sentances
def fit(dataset):    
    unique_words = set() # at first we will initialize an empty set
    # check if its list type or not
    if isinstance(dataset, (list,)):
        for row in dataset: # for each review in the dataset
            for word in row.split(" "): # for each word in the review. #split method converts a string into list of words
                if len(word) < 2:
                    continue
                unique_words.add(word)
        unique_words = sorted(list(unique_words))
        vocab = {j:i for i,j in enumerate(unique_words)}
        return vocab
    else:
        print("you need to pass list of sentance")
vocab = fit(["abc def aaa prq", "lmn pqr aaaaaaa aaa abbb baaa"])
print(vocab)

Output:

{'aaa': 0, 'aaaaaaa': 1, 'abbb': 2, 'abc': 3, 'baaa': 4, 'def': 5, 'lmn': 6, 'pqr': 7, 'prq': 8}



What is a Sparse Matrix?

  1. Before going further into details about Transform method, we will understand what sparse matrix is.

  2. Sparse matrix stores only non-zero elements and they occupy less amount of RAM comapre to a dense matrix. You can refer to this link.

  3. For example, assume you have a matrix,

[[1, 0, 0, 0, 0],

[0, 0, 0, 1, 0],

[0, 0, 4, 0, 0]]


from sys import getsizeof
import numpy as np
# we store every element here
a = np.array([[1, 0, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 4, 0, 0]])
print(getsizeof(a))

# here we are storing only non zero elements here (row, col, value)
a = [ (0, 0, 1), (1, 3, 1), (2,2,4)]
# with this way of storing we are saving alomost 50% memory for this example
print(getsizeof(a)) 

Output:

172 88


How to write a Sparse Matrix?:

  1. You can use csr_matrix() method of scipy.sparse to write a sparse matrix.

  2. You need to pass indices of non-zero elements into csr_matrix() for creating a sparse matrix.

  3. You also need to pass element value of each pair of indices.

  4. You can use lists to save the indices of non-zero elements and their corresponding element values.

  5. For example,

    • Assume you have a matrix,

[[1, 0, 0],

[0, 0, 1],

[4, 0, 6]]

  • Then you can save the indices using a list as, list_of_indices = [(0,0), (1,2), (2,0), (2,2)]

  • And you can save the corresponding element values as, element_values = [1, 1, 4, 6]

6. Further you can refer to the documentation here.


Transform method:

  1. With this function, we will write a feature matrix using sprase matrix.

from collections import Counter
from scipy.sparse import csr_matrix
test = 'abc def abc def zzz zzz pqr'
a = dict(Counter(test.split()))
for i,j in a.items():
    print(i, j)

Output:

abc 2 def 2 zzz 2 pqr 1


# https://stackoverflow.com/questions/9919604/efficiently-calculate-word-frequency-in-a-string
# https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.sparse.csr_matrix.html
# note that we are we need to send the preprocessing text here, we have not inlcuded the processing

def transform(dataset,vocab):
    rows = []
    columns = []
    values = []
    if isinstance(dataset, (list,)):
        for idx, row in enumerate(tqdm(dataset)): # for each document in the dataset
            # it will return a dict type object where key is the word and values is its frequency, {word:frequency}
            word_freq = dict(Counter(row.split()))
            # for every unique word in the document
            for word, freq in word_freq.items():  # for each unique word in the review.                
                if len(word) < 2:
                    continue
                # we will check if its there in the vocabulary that we build in fit() function
                # dict.get() function will return the values, if the key doesn't exits it will return -1
                col_index = vocab.get(word, -1) # retreving the dimension number of a word
                # if the word exists
                if col_index !=-1:
                    # we are storing the index of the document
                    rows.append(idx)
                    # we are storing the dimensions of the word
                    columns.append(col_index)
                    # we are storing the frequency of the word
                    values.append(freq)
        return csr_matrix((values, (rows,columns)), shape=(len(dataset),len(vocab)))
    else:
        print("you need to pass list of strings")
strings = ["the method of lagrange multipliers is the economists workhorse for solving optimization problems",
           "the technique is a centerpiece of economic theory but unfortunately its usually taught poorly"]
vocab = fit(strings)
print(list(vocab.keys()))
print(transform(strings, vocab).toarray())

Output:

['but', 'centerpiece', 'economic', 'economists', 'for', 'is', 'its', 'lagrange', 'method', 'multipliers', 'of', 'optimization', 'poorly', 'problems', 'solving', 'taught', 'technique', 'the', 'theory', 'unfortunately', 'usually', 'workhorse']

100%|████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<?, ?it/s]

[[0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 2 0 0 0 1]

[1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0]]



Comparing results with countvectorizer


from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer(analyzer='word')
vec.fit(strings)
feature_matrix_2 = vec.transform(strings)
print(feature_matrix_2.toarray())

Output:

[[0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 2 0 0 0 1] [1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0]]




Send Your Requirement Details at(If you have any issues or need any help):

realcode4you@gmail.com

Comments


bottom of page