top of page
realcode4you

Data Visualization Using Plotly | Choropleth COVID-19 Project



Requirement:

  • Successfully load data to dataframe without downloading the data

  • Successfully process data including additional columns, calculations, transformations

  • Produce animated plot of case moving average

  • Produce static plot of cumulative cases per 100,000

  • Code does not crash


Objectives:

  • Create an animated choropleth plot using plotly that analyzes a seven-day moving average of cases for some geographic unit and sub-unit (e.g. USA and states)

  • Create a second, non-animated, choropleth plot that shows cumulative cases per 100,000 people for the most recent date in the data file.

Requirements:

  • Find appropriate data source that includes new COVID-19 cases per day for the geographic region. (Direct link not downloaded file.)

  • Find a data source that estimates the population for the geographic region. (Direct link not downloaded file)

  • Load both to a pandas dataframe

  • Calculate cumulative cases per 100,000 population for the sub-region (i.e., state)

  • Calculate 7-day moving average if new cases

  • Plot 7-day moving average of cases on Plotly plot and animate by day (older dates on left of slider)

  • Create a separate plot of cumulative cases per 100,000 population. This should be for the maximum date in the dataframe and should not be animated.

  • Plots will include relevant title and hover text.

  • Colors will be continous scale of your choice.


Install the libraries

!pip install -U plotly

Load the Dataset

!git clone https://github.com/nytimes/covid-19-data.git

import pandas as pd
import plotly.express as px

#Visualizations on US Map
df_us = pd.read_csv('covid-19-data/us-counties.csv')
df_us['new_date'] = pd.to_datetime(df_us['date'])
df_us['Year-Week'] = df_us['new_date'].dt.strftime('%Y-%U')
df_us.head()

Output:


us100k = df_us

Shape of dataset

df_us = df_us.iloc[:1000,:]
df_us.shape

Output:

(1000, 8)

Short And Group By

df_us = df_us.sort_values(by=['county', 'state', 'new_date'])
df_us_week = df_us.groupby(['county', 'state', 'fips', 'Year-Week']).first().reset_index()
df_us_week
df_us_week.head()

Output


Count the cases

df_us_week['cases'].max(), df_us_week['cases'].min()

Output

(91, 1)

Load Json data

from urllib.request import urlopen
import json
with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:
    counties = json.load(response)

counties["features"][100]

Output:

{'geometry': {'coordinates': [[[-113.931799, 42.535275],
    [-113.932904, 42.765032],
    [-113.763862, 42.764508],
    [-113.713928, 42.849733],
    [-113.714701, 43.20003],
    [-113.413693, 43.199785],
    [-113.413026, 42.84925],
    [-113.472155, 42.849218],
    [-113.472177, 42.669251],
    [-113.557609, 42.656416],
    [-113.655338, 42.535663],
    [-113.779811, 42.55687],
    [-113.931799, 42.535275]]],
  'type': 'Polygon'},
 'id': '16067',
 'properties': {'CENSUSAREA': 757.591,
  'COUNTY': '067',
  'GEO_ID': '0500000US16067',
  'LSAD': 'County',
  'NAME': 'Minidoka',
  'STATE': '16'},
 'type': 'Feature'}

Create an animated choropleth plot using plotly that analyzes a seven-day moving average of cases for some geographic unit and sub-unit (e.g. USA and states)


df_us_week = df_us_week.sort_values(by=['Year-Week'])
fig = px.choropleth(df_us_week, geojson=counties, locations='fips', color='cases',
                           color_continuous_scale=px.colors.sequential.OrRd,
                           title = "seven-day moving average of cases",
                           scope="usa",
                           animation_frame="Year-Week",
                          )
fig["layout"].pop("updatemenus")
fig.show()


Output:


Create a second, non-animated, choropleth plot that shows cumulative cases per 100,000 people for the most recent date in the data file.


us100k=us100k.loc[us100k['cases'] <= 100000]
fig = px.choropleth(us100k, geojson=counties, locations='fips', color='cases',
                           color_continuous_scale=px.colors.sequential.OrRd,
                           title = "cumulative cases per 100,000 people",
                           scope="usa",

                          )
fig["layout"].pop("updatemenus")
fig.show()

Output


Comments


bottom of page