Import Necessary Packages
import tensorflow as tf
import cv2
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Dense, MaxPool2D, Conv2D
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Activation, Add
from tensorflow.keras.regularizers import l2
from tensorflow.keras.optimizers import Adam, Adagrad, Adadelta, Adamax, RMSprop
Load Dataset
fldr="./UTKFace"
import os
flies=os.listdir(fldr)
ages=[]
genders=[]
images=[]
for fle in flies:
age=int(fle.split('_')[0])
gender=int(fle.split('_')[1])
total=fldr+'/'+fle
print(total)
image=cv2.imread(total)
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
image=cv2.resize(image,(48,48))
images.append(image)
Output:
./UTKFace/100_0_0_20170112213500903.jpg.chip.jpg
./UTKFace/100_0_0_20170112215240346.jpg.chip.jpg
./UTKFace/100_1_0_20170110183726390.jpg.chip.jpg
./UTKFace/100_1_0_20170112213001988.jpg.chip.jpg
./UTKFace/100_1_0_20170112213303693.jpg.chip.jpg
./UTKFace/100_1_0_20170112215032192.jpg.chip.jpg
./UTKFace/100_1_0_20170117195420803.jpg.chip.jpg
./UTKFace/100_1_0_20170119212053665.jpg.chip.jpg
./UTKFace/100_1_2_20170105174847679.jpg.chip.jpg
./UTKFace/100_1_2_20170112213615815.jpg.chip.jpg
./UTKFace/100_1_2_20170112222336458.jpg.chip.jpg
./UTKFace/101_0_0_20170112213500903.jpg.chip.jpg
...
...
...
for fle in flies:
age=int(fle.split('_')[0])
gender=int(fle.split('_')[1])
ages.append(age)
genders.append(gender)
plt.imshow(images[87])
Output:
print(ages[87])
print(genders[87])
images_f=np.array(images)
ages_f=np.array(ages)
genders_f=np.array(genders)
np.save(fldr+'image.npy',images_f)
np.save(fldr+'ages.npy',ages_f)
np.save(fldr+'genders.npy',genders_f)
#Finding the no. of Male and Female Samples respectively
values, counts=np.unique(genders_f, return_counts=True)
print(counts)
output:
[12391 11317]
#Plotting the No. of Male and Female Samples
fig=plt.figure()
ax=fig.add_axes([0,0,1,1])
gender=['Male','Female']
values=[12391,11317]
ax.bar(gender,values)
plt.show()
Output:
#Finding the no. of samples in each age
values, counts=np.unique(ages_f,return_counts=True)
print(counts)
output:
[1123 482 289 273 196 131 139 263 166 156 65 130 81 157
177 247 158 262 98 284 346 395 426 859 734 2197 615 918
570 724 350 664 143 409 880 483 293 325 266 526 132 266
157 100 440 153 170 153 148 381 138 232 241 353 268 236
97 271 82 293 161 125 103 50 259 77 94 100 56 147
33 98 63 32 148 58 28 69 23 133 22 40 18 24
155 35 10 34 33 82 2 13 5 9 17 9 11 2
1 5 5 1 3 4]
#Plotting the samples age wise
#Converting Age counts to lists
val=values.tolist()
cnt=counts.tolist()
#Plotting the samples agewise
plt.plot(counts)
plt.xlabel=('Ages')
plt.ylabel=('Distribution')
plt.show()
output:
#Defining labels for Output
len(genders)
output:
23708
labels=[]
i=0
while i<len(ages):
label=[]
label.append(ages[i])
label.append(genders[i])
labels.append(label)
i=i+1
#Creating another list of images from existing one
for better learning
images_f_2=images_f/255
images_f_2.shape
output:
(23708, 48, 48, 3)
labels_f=np.array(labels)
Splitting Data set into Train
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(images_f_2,labels_f,test_size=0.25)
Y_train[0:5]
output:
array([[68, 0], [ 2, 1], [61, 0], [34, 1], [30, 0]])
Splitting Y_test and Y_train further for better understanding
Y_train_2=[Y_train[:,1],Y_train[:,0]]
Y_test_2=[Y_test[:,1],Y_test[:,0]]
Y_train_2[0][0:5]
output:
array([0, 1, 0, 1, 0])
Y_train_2[1][0:5]
output:
array([68, 2, 61, 34, 30])
Model Evaluation:
from tensorflow.keras.layers import Conv2D, MaxPooling2D
If you Looking Complete Solution of above problem or Looking for other image processing assignment help then send your reqirement details at:
Here you get solution by top rated professionals and expert with an affordable price.
Comments